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Abstract

Video deblurring with event information has at-
tracted considerable attention. To help deblur each
frame, existing methods usually compress a spe-
cific event sequence into a feature tensor with the
same size as the corresponding video. However,
this strategy neither considers the pixel-level spa-
tial brightness changes nor the temporal correla-
tion between events at each time step, resulting
in insufficient use of spatio-temporal information.
To address this issue, we propose a new Spatio-
Temporal Relation-Attention network (STRA), for
the specific event-based video deblurring. Con-
cretely, to utilize spatial consistency between the
frame and event, we model the brightness changes
as an extra prior to aware blurring contexts in each
frame; to record temporal relationship among dif-
ferent events, we develop a temporal memory block
to restore long-range dependencies of event se-
quences continuously. In this way, the comple-
mentary information contained in the events and
frames, as well as the correlation of neighboring
events, can be fully utilized to recover spatial tex-
ture from events constantly. Experiments show that
our STRA significantly outperforms several com-
peting methods, e.g., on the HQF dataset, our net-
work achieves up to 1.3 dB in terms of PSNR over
the most advanced method. The code is available at
https://github.com/Chengzhi-Cao/STRA.

1 Introduction
As an important data source in the computer vision commu-
nity, video usually contain inevitable blur due to movement of
objects [Gallego et al., 2021; Zou et al., 2021]. To eliminate
the adverse effects, video deblurring have attracted consider-
able attentions [Touvron et al., 2021; Li and Xu, 2021]. Re-
cently, a new sensor, called event camera for recording and
capturing scene intensity changes at the microsecond level,
has been recommended to promote video blurring [Zhu et al.,
2019].
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Blurry Frame 16.17 | 0.492 GT  PSNR | SSIM STFAN 20.32 | 0.626

eSL-Net 23.25 | 0.735 STRA, 25.05 | 0.838Event

Figure 1: Quantitative and qualitative comparisons on deblurring re-
sults by state-of-the-art video deblurring STFAN [Zhou et al., 2019],
eSL-Net [Wang et al., 2020] and our STRA.

Due to the success of convolutional neural networks
(CNNs) [Wang et al., 2021; Nikzad et al., 2021], event-driven
deblurring has been extensively developed and achieved
promising performance [Xu et al., 2021]. However, these
methods still have some limitations. On the one hand, ex-
isting video deblurring networks directly utilize events as an
extra prior without considering the correlation among differ-
ent events [Wang et al., 2019] [Zhou and Teng, 2021]. These
networks fulfill an independent feature map by compressing
the intensity changes into one time step, so the temporal in-
formation will be lost and the high temporal resolution of
events cannot be fully utilized. On the other hand, event-
driven video recovery networks rely heavily on the deploy-
ment of events [Zhu et al., 2019]. However, these networks
simply concatenate features maps of both the blurring frames
and events as the input of CNNs, ignoring the rich bright-
ness change information as well as spatial consistency be-
tween events and frames [Zou, 2020]. These problems limit
the further development of principled work on event-based
video deblurring.

In this paper, we develop a unique framework for the event-
driven video deblurring, where the spatial consistency be-
tween the event and frame is fully utilized to recover spatial
textures, while the temporal correlation in event sequences is
represented to record long-range dependencies of them con-
tinuously. To achieve these two goals, we design a frame-
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event Spatial Fusion Block (SFB) to combine the two types of
features from frames and events. With the help of the bright-
ness prior, this block calculates the non-local features to cap-
ture spatial consistency between each frame and event. Then,
to utilize high temporal information provided by events, we
introduce a Temporal Memory Block (TMB) to restore tem-
poral information between different sequences of events con-
tinuously. This block computes the long-range dependency of
different events to restore temporal event correlation. The fi-
nal deblurring network is constructed based on the two blocks
and trained in an end-to-end fashion. Furthermore, our pro-
posed spatial fusion block and temporal memory block can
cope with synthetic and real-world video deblurring datasets
to achieve favorable performance, substantiating the effec-
tiveness of our spatio-temporal relation-aware structure.

The main contributions of our work are three-fold:

• We propose a spatio-temporal relation-aware network
for accurate event-driven video deblurring. Our network
achieves better performance through fusing features of
frames and events properly.

• A novel spatial fusion block is proposed for model-
ing the spatial relationship between frames and events,
which greatly makes use of the spatial consistency.

• A temporal memory block is developed to record long-
range dependencies of event sequences in each time step
to utilize temporal information from events effectively.

• Extensive experiments show that our method can
yield high-quality deblurred results, e.g., our network
achieves superior performance by 1.3 dB compared with
[Xu et al., 2021] on the HQF dataset.

2 Related Work
2.1 Video Deblurring
Due to the ill-posed nature of video deblurring, traditional
methods always constrain this problem by using some as-
sumptions or priors, which cannot adapt to complex dynamic
scenes including moving things. The blurring effects come
from several different scenes, such as depth variation, mov-
ing objects, camera shaking, etc [Li et al., 2020]. Recently,
learning-based methods have been introduced to solve this
problem and made considerable achievements. In particular,
[Deng et al., 2021] proposes a separable-patch structure with
channel spatial attention blocks to utilize multi-scale integra-
tion to obtain larger receptive field. To make better use of the
consecutive sharp frames, [Li and Xu, 2021] designs a cor-
relative module relying on spatial relations among blurring
frames to enhance the correlations. [Durand, 2018] regards
all frames as equal and construct them order-independently in
the burst by putting them in arbitrary size. [Zhang and Luo,
2019] applies 3D convolution blocks in temporal domains
to restore sharp frame details and use a GAN-based gener-
ator for effective adversarial training. Although the above-
mentioned methods achieve considerable performance, they
always attach great importance to network structures but ig-
nore other helpful information to improve the deblurring per-
formance.

2.2 Event-based Video Deblurring
The event camera measures the pixel-level brightness change
and outputs events when the change exceeds a pre-defined
threshold. By introducing events into the deblurring issue,
it is easier to handle the blurry texture erasure. Most event-
based video deblurring methods utilize neural networks and
directly learn the relation from a blurry image to a sequence
of sharp images with the aid of events. So the most impor-
tant question is, how to make full use of its high temporal
resolution. [Pan et al., 2019] finds that blur frames are al-
ways around in sharp frames. Based on this observation, the
authors proposed a flexible fusion module to detect nearest
sharp frames and obtain similarity in event and blur videos.
To solve the degradation problem caused by the inconsis-
tent data, [Xu et al., 2021] utilizes the self-supervised learn-
ing strategy to exploit latent information in events. D2Net
[Shang et al., 2021] detects blurry frames as a binary classifi-
cation task, adopt bidirectional LSTM (BiLSTM) to classify
sharp frames and blurry frames, by which temporal correla-
tions of adjacent frames in both forward and backward direc-
tions are leveraged. [Zou, 2020] finds that the integrals of
events among sharp and blurry frames, and adopted events
to predict the residual for video deblurring and interpolation.
[Wang et al., 2020] applies sparse learning on the sparsity
data of events, and perform super-resolution, deblurring and
denoising simultaneously in an general network.

The existing methods, however have not considered the use
of rich brightness change information by mining the spatial
consistency between image features and event features. In ad-
dition, the long-time dependency in different event sequences
is also not fully exploited. Therefore, we propose a novel
framework to solve the event-based video deblurring by con-
stantly being aware of the spatial consistency and temporal
correlation between frames and events.

3 Methodology
3.1 Network Structure
Figure 2 presents the workflow of our proposed network.
Given a sequence of video frames B and their correspond-
ing events E, the network processes frames in temporal order
with brightness prior of events to generate the final output O.
To complete a target sharp frame, our network firstly takes
three consecutive frames into an U-Net structure to extract
features. Then, the spatial fusion block is adopted to fuse two
types (frames and events) of features properly by calculating
non-local operation with the help of brightness prior. To take
advantages of high temporal information provided by events,
the temporal memory block will restore temporal information
between different sequences of events continuously. Since the
core components of our network are the spatial fusion block
and temporal memory block, below we detail these two parts.

3.2 Spatial Fusion Block
Inspired by the asymmetric fusion between intra-scale fea-
tures from different scales [Cho et al., 2021], we take three
different feature maps as input and combine multi-scale fea-
tures by resizing three different maps to the same scale and
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Figure 2: Our proposed network architecture, which is based on the U-Net structure, contains two specifically designed blocks: spatial fusion
block (SFB) and temporal memory block (TMB). Given the triplet blurring consecutive frames and their corresponding event sequences,
SFB is utilized to calculate the spatial consistency between frames and events, and then fuse them properly; TMB restores the long-range
dependencies of different event sequences continuously and records them in temporal order, providing event features for SFB.

concatenating them for fusion with event features. Specifi-
cally, this process is formulated as:

CB = Conv(Concat(CB↓
1 , CB↓

2 , CB3)), (1)

where CB1, CB2 and CB3 represent the three different maps
from U-Net encoder, CB represents the output of feature
fusion. Downsampling (↓) is applied in order to concate-
nate features from different scale. For events, we use a
downsampling layer to keep the same scale with the frame
feature. Then, with consideration of spatial correlation be-
tween all positions in each frame and the corresponding
brightness changes in events, we apply the non-local atten-
tion operation to fuse spatial feature [Wang et al., 2018;
Li et al., 2019] from frames and events as:

Feati =
1

C(E)

∑
∀j

f(Ei, Fj)g(Fj), (2)

where i is the index of the output position and j is the in-
dex that enumerates all possible positions. F and E represent
the input frame feature maps and event feature maps, respec-
tively. Feat is the output of the same size as F . The function
g(·) calculates the representation of the input frame feature
maps at the position j. The result will be normalized by fac-
tor C(x) = N , where N is the number of positions in E. The
function f(·, ·) is defined as follows:

f(Ei, Fj) = θ(Ei)
Tφ(Fj). (3)

We use softmax operation as activation function. Finally, to
make the connection with U-net decoder feature maps, we
also upsample the output to three maps (EB1,EB2, EB3)
with different scales. The whole structure of SFB is shown in
Figure 2(b). Different from the traditional non-local network
that only calculates the weighted sum of features at all posi-
tions in a single feature map, our SFB fuses three frame fea-
ture maps with different scales and captures correlation with
corresponding event sequences.

3.3 Temporal Memory Block
Motivated by the spatial and temporal non-local correlation
to generate segmentation to current frame [Xie et al., 2021],
our temporal memory block consists of a memory encoder
and a reader. For T − 1 and T + 1 event sequence, we use
one common-used and two special-used convolutional layers
to obtain the key and the value. Each key and value will be
obtained by deploying their own convolutional layer on the
common feature map Fm so that all keys and values of each
frame will be stored by temporal order [Yao et al., 2021]. The
equations are shown as follows:

KT−1, VT−1 = ConvT−1(Fm), (4)
KT+1, VT+1 = ConvT+1(Fm). (5)

In the memory reader, the keys and values of previous
events and next events are concatenated, and the similarities
between query and keys are used to measure temporal non-
local correspondence with current events, which will generate
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(b) Blurry Frame 16.64 | 0.556(a) GT PSNR | SSIM (d) CSD 24.53 | 0.801

(f) STFAN 23.35 | 0.790 (g) eSL-Net 22.60 | 0.744(e) Event (h) STRA, 26.53 | 0.862

(c) LEDVDI 19.52 | 0.626

Figure 3: Visual results of event-driven video deblurring in HQF dataset. Quantitative results are presented by PSNR | SSIM values.

Metrics
Methods LEDVI D2Net eSL-Net CSD STFAN RED-Net STRA Ideal value

PSNR 22.22 26.16 25.42 24.71 24.17 25.72 27.54 +∞
SSIM 0.687 0.864 0.754 0.724 0.711 0.763 0.834 1.00

Table 1: Average PSNR and SSIM results on the HQF dataset.

the corresponding value to aware temporal changes [Zhang
and Zhu, 2021]. Then, the value is processed based on the
non-local attention operation [Hu et al., 2018] as shown in
Figure 2(c). In this way, the temporal correlation between
the current event sequence and its neighbor sequences will be
fully utilized to record long-range dependencies.

3.4 Loss Function
In this paper, we use Mean squared error (MSE) to train our
network in an end-to-end fashion:

LMSE = ||f(B)−GT ||2, (6)

where B and GT is the blurry frame and its ground truth
counterpart, respectively. f(·) represents the network.

4 Experiments
4.1 Experimental Settings
Dataset. Our Spatio-Temporal Relation-Aware network
(STRA) is trained based on the benchmark GoPro dataset
[Nah et al., 2017], composed of synthetic events, 2,103 pairs
of blurring frames and sharp clear ground-truth frames. The
blurry image is offered by averaging nearby (the number
varies from 7 to 13) frames. To increase the noise diver-
sity, V2E [Hu et al., 2021] is utilized to generate the cor-
responding event sequences with consideration of different
contract thresholds for pixel-level from Gaussian distribu-
tion N(0.18, 0.03) [Zou, 2020]. For evaluation in real-world

events, we utilize HQF dataset [Stoffregen et al., 2020], in-
cluding both real-world events and ground-truth frames cap-
tured from a DAVIS240C [Brandli et al., 2014], which is
a dynamic event-based vision sensor to report brightness
changes. The blurring frames are generated by using the same
strategy as the GoPro dataset. We also test our network on
the GoPro testing datasets, where the number of frame pairs
is 1,111.

Implementation Details. Our network is implemented us-
ing Pytorch on a single NVIDIA RTX 2080Ti GPU. In the
training process, we randomly cropped the sampled frames
with the size of 256×256. For data augmentation, each patch
was horizontally flipped with the probability of 0.5. We use a
batch size of 8 training pairs and ADAM optimizer [Kingma
and Ba, 2017] with parameter β1 = 0.9, β2 = 0.999. The
maximum training epoch is set to 200, with the initial learn-
ing rate 10−4, then decays by 25% every 50 epochs.

4.2 Comparison with State-of-the-art Methods
We compare our proposed STRA with several state-of-the-
art event-driven video deblurring methods, including LEDVI
[Zou, 2020], eSL-Net [Wang et al., 2020], CSD [Wang et al.,
2021], STFAN [Zhou et al., 2019], and RED-Net [Xu et al.,
2021] D2Net [Shang et al., 2021]. The quantitative results in
GoPro testing dataset and HQF dataset are presented in Ta-
bles 1 and 2. It is clear that our network achieves outstanding
improvements compared with the state-of-the-arts, on aver-
age 0.91 dB in GoPro dataset and 1.3 dB in HQF dataset with
real-world events. This is because our STRA can benefit from
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(d) CSD 21.54 | 0.671(c) LEDVDI 18.39 | 0.568

 (e) Event (f) STFAN 24.49 | 0.788 (g) eSL-Net 23.34 | 0.751 (h) STRA, 26.61 | 0.821

(a) GT PSNR | SSIM (b) Blurry Frame 16.42 | 0.440

Figure 4: Visual results of event-driven video deblurring in GoPro dataset. Quantitative results are presented by PSNR | SSIM values.

Metrics
Methods LEDVI D2Net eSL-Net CSD STFAN RED-Net STRA Ideal value

PSNR 22.86 28.10 22.59 27.54 28.07 28.98 29.73 +∞
SSIM 0.733 0.897 0.750 0.834 0.836 0.849 0.927 1.00

Table 2: Average PSNR and SSIM results on the GoPro dataset.

Methods # Params FLOPS
Throughput
(images/s)

LEDVI 4.73M 1.54G 11.57
eSL-Net 1.32M 4.97G 17.21
CSD 2.07M 3.32G 20.03
STFAN 3.64M 1.18G 14.78
STRA 2.36M 1.10G 22.54

Table 3: Comparison of different backbones on parameter numbers,
FLOPS and Thoughput. The Throughput is measured as the number
of images processed per second on a RTX 2080Ti GPU.

Methods frame-based frame-event-based
D2Net STRA D2Net STRA

PSNR 25.93 26.82 28.10 29.73
SSIM 0.770 0.792 0.897 0.927

Table 4: Comparisons of different baselines between D2Net and
STRA in GoPro dataset.

the temporal correlation between different event sequences,
whose brightness changes can be used to reconstruct sharp
frames. Moreover, our model can fully utilize spatial con-
sistency between each frame and the corresponding event se-
quence.

Figures 3 and 4 present deblurring results of STRA
and other comparing methods. Visual quality comparisons
demonstrate that the proper fusion of frames and events data

in spatial and temporal dimensions can accomplish high-
quality video deblurring with more structural details. For
example, in Figures 3 (e), the event data can capture much
more brightness changes of one scene and contribute to the
final deblurring results. In Figure 4, the letter ‘P’ in the Go-
Pro testing dataset can be restored better by our STRA. Other
comparison methods, such as eSL-Net [Wang et al., 2020]
and LEDVI [Zou, 2020], however, did not make full use of
high temporal information and spatial consistency in events
and frames, so the reconstructed frames are unstable on both
synthetic and real-world event datasets.

4.3 Runtime and Parameter Numbers
We use 200 images with the size of 180 × 320 for testing
on a RTX 2080Ti GPU. Results in average running time and
parameters are presented in Table 3. It is obvious that our
STRA has comparable FLOPS and running time with consid-
eration of acceptable storage consumption to achieve promis-
ing video deblurring performance.

4.4 Ablation Study
To find out what contributes to the superior performance of
our approach, we conducted ablation study to demonstrate
the effectiveness of each component.

Effect of Events. We test the importance of events by train-
ing D2Net [Shang et al., 2021] and our STRA without events
over the synthetic GoPro dataset, and the quantitative results
are shown in Table 4, which shows that the frame-event-based
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Temporal
Memory Block

Spatial
Fusion Block GoPro HQF

% % 27.81 25.03
✓ % 29.04 25.94
% ✓ 28.50 25.38
✓ ✓ 29.73 27.54

Table 5: Quantitative ablation study on the two relation-aware
blocks. We evaluate the effect of two blocks on PSNR values.

Channel #
Res-unit #

R = 4 R = 8 R = 12

C = 16 28.02 28.51 28.73
C = 32 29.29 29.73 29.11
C = 48 28.71 29.08 29.45

Table 6: PSNR values on different parameter settings.

method has better performance than other baselines. More-
over, our STRA also achieves superior performance than
STFAN in all baselines.
Effect of TMB and SFB. We validate the importance of
temporal memory block by training STRA without neighbor-
ing correlation of events over the synthetic GoPro dataset,
and there is a great performance gap of quantitative results
over two datasets in the first two rows of Table 5. It shows
that temporal dependency between different events can ef-
ficiently improve the deblurring performance by 1.23 dB in
GoPro dataset and 0.91 dB in HQF dataset.

We also test the effect of spatial fusion block in the same
way, and results are shown in the first and third row in Table
5. Apparently, spatial fusion with events and frames achieves
PSNR gains up to 0.69 dB and 0.35 dB on GoPro and HQF
dataset, respectively. Most importantly, when both spatial
fusion block and temporal memory block are embedded in
STRA, we achieve even higher deblurring performance than
inserting only one block.
Effect of the ResNet Depth. Note that in Figure 2, each
res-block has several basic res-units, and the number of chan-
nels attaches importance to the performance of STRA. So
we also evaluate the influence of the number of channels
and res-units in STRA. Specifically, we set channel number
C ∈ (16, 32, 48) and res-unit number R ∈ (4, 8, 12) . Ta-
ble 6 shows the PSNR and SSIM performance in different
settings. To achieve a good trade-off between efficiency and
performance, we set C = 32 and R = 8 as the default setting.

4.5 Visualization
We first visualize some attention maps to see the represen-
tation of the spatial non-local operation between frames and
events [Mou et al., 2021]. In Figures 5 (b), it is clear that sim-
ilar brightness can contribute more to query patches, which
demonstrates that our spatial fusion block can also present
long-range spatial correlations to particular patches.1

1More results and visualizations can be found in the supplement.

0.0

0.4

0.6

0.8

1.0

0.2

(a) (b) (c) 

(d) (e) (f) 
0.0

0.4

0.6

0.8

1.0

0.2

Figure 5: Visualizations of similarity matrixes in the spatial and tem-
poral blocks. Regions of query points are labeled with red and yel-
low cross. The similarity matrixes of query points are presented
in the form of heat maps in (b) and (e). For illustration purpose,
we present some greatly correlated neighbors (labeled with green
boxes) in (c) and (f).

For temporal dependency between different events, we
show some similarity matrixes with neighbor events in Figure
5 (e). One can see that regions of frequent brightness changes
are more important for event patches, which illustrates that
temporal connection between neighbor event sequences has
been built in this way.

5 Conclusion
We proposed a new relation-aware network for event-driven
video deblurring by rethinking the problem at both the spa-
tial and temporal level. One advantage of this method over
most deep-learning-based deblurring models is that we at-
tach importance to the temporal correlation between different
event sequences, and restore it continuously to achieve better
deblurring performance in consecutive frames. While other
event-driven deblurring models take a single frame and cor-
responding events as input with no consideration of high tem-
poral information in events. On the other hand, our network
calculates spatial consistency between events and frames by
improving non-local operations to capture blurring contexts.
Our network learns to reconstruct sharp edges by relying on
sufficient temporal and spatial information in events to cre-
ate high-quality frames. Both subjective and objective results
on synthetic and real-world datasets have demonstrated the
effectiveness of our proposed network.
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